Knäckta satellitkrypton och hemliga algoritmer

Ars Technica skriver om hur forskare i Tyskland lyckats knäcka krypton som används vid satellitkommunikation.

Satellitkommunikation

Eftersom signalen från en satellit täcker så stora ytor är det enkelt att fånga in signalen. För att skydda samtal från avlyssning krävs därför ett bra konfidentialitetsskydd – ett bra krypto.

Det är den internationella standardriseringsorganisationen ETSI som specificerat både kryptona GMR-1 och GMR-2 kryptona samt hur dom ska användas. Hur dom ska användas är öppen information, men själva kryptona är hemliga. ETSI skriver i sin specifikation (pdf):

The internal specification of algorithm A5-GMR-1 is managed under the responsibility of the GSC; it will be made available in response to an appropriate request

Att algoritmerna är hemliga hindrade dock inte forskarna. Genom hacka sönder uppdateringsfiler av programvaran till telefoner samt genom att analysera trafiken vid användande av satellittelefoner från Thuraya och Inmarsat kunde forskarna räkna ut hur algoritmerna fungerar.

Forskarnas analys visar att det skydd kryptona ger är så svagt att det finns en klar risk att satellitbaserad trafik inklusive samtal går att avlyssna. I artikeln Don’t Trust Satellite Phones: A Security Analysis of Two Satphone Standards skriver forskarna:

In this paper, we analyze the encryption systems used in the two existing (and competing) satphone standards, GMR-1 and GMR-2.

We were able to adopt known A5/2 ciphertext-only attacks to the GMR-1 algorithm with an average case complexity of 2**32 steps. With respect to the GMR-2 cipher, we developed a new attack which is powerful in a known-plaintext setting. In this situation, the encryption key for one session, i.e., one phone call, can be ecovered with approximately 50–65 bytes of key stream and a moderate computational complexity.

A major finding of our work is that the stream ciphers of the two existing satellite phone systems are considerably weaker than what is state-of-the-art in symmetric cryptography.

(På forskarnas egna webbplats finns mycket mer information.)

Forskarnas bedömning är att eftersom det skulle kosta så mycket att byta algoritmer kommer dessa inte att ändras. Istället rekommendrar dom att betrakta kommunikationen som öppen och sedan komplettera med ytterligare lager av skydd. Tyvärr kostar dessa extraskydd kapacitet i en förbindelse som redan har ganska begränsad kapacitet. Dessutom kan dessa skydd införa ökad fördröjning och andra trafikala problem. Inmarsat, som även är operatör av satellitkommuninkation har över än så länge inte kommenterat eller gett några officiella råd till sina kunder.

Tyvärr är detta inte första gången ett hemligt krypto visat sig vara svagt och långt ifrån vad man kan förvänta sig av ett krypto som används i befintliga system. I smarta kort av MiFare Classic-typ, som bland annat används för betalning i publika transportsystem i Göteborg och Stockholm, finns ett hemligt krypto kallat Crypto-1. Trots att kryptot var hemligt lyckades forskare klura ut både hur kryptot fungerar, och att dess säkerhet var i stort noll.

Keeloq är ett krypto som används i elektroniska bilnycklar av i stort sett samtliga stora biltillverkare. Även detta krypto var hemligt och även här lyckades forskare räkna ut hur det fungerar samt visa på kryptots monumentala brister.

För ETSI är forskarnas nya resultat ännu ett misslyckande. Deras kryptostandarder för DECT, GSM, 3G och satellitkommunikation har alla visat sig ha stora brister. När det kommer till kryptoalgoritmer är det frågan om ETSI lever upp till sin devis World Class Standards.

Att hålla informationen om vilka kryptografiska algoritmer du använder hemliga är inte ett problem. Du kan helt enkelt strunta att berätta det. Problemet är om säkerheten hos ditt system beror av att denna information är hemlig.

Information som om den kommer ut kan skada din verksamhet ställer krav på skydd som kostar pengar. Du behöver införa mekanismer och metoder för att begränsa tillgången. Skyddet behöver dessutom övervakas så att du vet att det faktiskt fungerar.

Dessutom bör du ta fram en plan för hur du ska agera om informationen trots allt kommer ut. När hemligheten kommit ut måste den troligen bytas ut, alternativt att du måste kasta in handduken och införa andra skyddsåtgärder så som forskarna nu föreslår att användare av satellitkommunikation bör göra. Att byta algoritm kan bli väldigt kostsamt. Är det en algoritm som används i inbyggda system som tillverkas i stora volymer, används i fält och har lång livslängd är innebär bytet eventuellt att du måste byta ut hela systemet.

Hade din hemlighet istället bara varit en kryptonyckel hade bytet troligen handlat om att byta ut en sträng på 16, 32, 64 tecken eller liknande. Säkerheten sitter i nyckeln. Den är allt du egentligen ska behöva skydda.

Bra kryptoalgoritmer försvagas inte av att informationen om hur dom fungerar är känd. Tvärt om beror vår tillit på algoritmerna just av öppenheten. Algoritmen som utgör blockkryptot AES undersöktes ett stort antal gånger på olika sätt innan den accepterades som standard. Och AES fortstt under kontinuerlig undersökning. Det finns generationer av forskare som fixat sin hatt eller årets publiceringar genom att försöka hitta på nya sätt att vara elak mot AES.

Ju fler undersökningar som en algoritm står emot desto större tillit vågar vi sätta till den. Och det är öppenheten, tillgängligheten som gör dessa undersökningar möjliga.

I jämförelse med en öppen algoritm undersöks en hemlig algoritm mer sällan. Dessutom sker undersökningen oftast under en begränsad tid. När en hemlig algoritm bedömts som säker tas den i bruk och sedan sker sällan omvärdering av algoritmens säkerhet.

Det finns användare av hemliga algoritmer som vet vad dom gör, som har den spetskompetens som krävs att göra en bra bedömning. Men när erkända kryptoforskare som medlemmarna i ETSIs säkerhetsgrupp SAGE gör fel och försvagar snarare än förstärker en algoritm (som är fallet med KASUMI, byggt på MISTY-1) är det inte självklart att även en enskild grupp med aldrig så skarpa experter gör en bra bedömning. Den mekanism som har störst chans att ge bra algoritmer är öppna processer med många, oberoende tester över lång tid. Att skynda långsamt och kontinuerligt ompröva resultat.

AES togs fram genom en sådan process, strömkryptona i eSTREAM togs fram genom en sådan process och kommande hashfunktionen SHA-3 tas fram på detta sätt. Det finns inga garantier att detta ger säkra algoritmer, det visar bland annat eSTREAM där några krypton i dag är knäckta. Men detta är den bästa metod vi har i dag och det är en process som förbättras för varje iteration.

Även ETSI verkar till slut ha lärt sig av alla sina misstag och i arbetet med den senaste standarden ZUC har det faktiskt organiserats seminarier, workshops, diskussionsforum på nätet och varit en mycket mer öppen process (även om det finns mindre öppna designval även i ZUC).

Om du oroar dig för att någon ska veta hur ditt system fungerar så strunta att berätta vilket krypto du använder. Men hitta inte på egna algoritmer, utan använd öppna, etablerade standarder som stått emot granskning under lång tid. Gör du det är nyckeln till kostnadseffektiv,fungerande säkerhet din kryptonyckel.

3 reaktioner på ”Knäckta satellitkrypton och hemliga algoritmer

  1. Jag undrar hur man bär sig åt för att komma på en så vansinnig idé som att försöka hålla en algoritm hemlig samtidigt som man delar ut den till ett stort antal användare.

  2. Aloha!

    Exakt. Är algoritmen hemlig krävs accesskontroll och minimering av spridning. En standard avsedd att implementeras och anvämdas av ett stort antal parter – helt obegripligt. Att inte istället utgå ifrån att algoritmen är öppen och anpassa sin säkerhetsmodell utifrån det.

    Man kan delvis jämföra med DRM-skydd i DVD-spelare etc där nyckeln och även delar av algoritmer är hemliga. Du får där även en konflikt att den du vill samarbeta med (din kund – konsumenten) samtidigt är del av din hotbild.

Kommentera

E-postadressen publiceras inte. Obligatoriska fält är märkta *

Följande HTML-taggar och attribut är tillåtna: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>